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1 Introduction

Eleven-dimensional supergravity admits well-known “Freund-Rubin” compactifications of

the form AdS4 ×M7 or AdS7 ×M4, where M7 and M4 are positive Einstein manifolds [1].
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Less well-known is the fact that there are also solutions of the form AdS5 ×M6 where M6

is a six dimensional positive Kähler-Einstein space [2]. The solutions have metric1

ds2 = gµν(x)dxµdxν + gmn(y)dymdyn, (1.1)

where gµν and gmn are the metrics on AdS5 and M6 respectively, with Ricci tensors

Rµν = −2c2gµν , Rmn = 2c2gmn, (1.2)

so the radius of AdS5 is ℓ =
√

2/|c|. The 4-form is

F = cJ ∧ J, (1.3)

where J is the Kähler form on M6. Examples of suitable M6 are: CP 3; the quotient

SU(3)/T where T is the maximal torus of SU(3); the Grassmanian Gr2(R
5); or a product2

M4 × S2 where the only possible M4 are CP 2, S2 × S2, or a del Pezzo surface dPk,

k = 3 . . . 8 [4, 5]. This list includes all cases for which M6 is either homogeneous or a product

(inhomogeneous non-product M6 also exist [4]). These solutions are not supersymmetric:

for M6 = CP 3 this was proved in [6], and for general M6 it follows from the analysis of

supersymmetric AdS5 solutions of [7].

By the AdS/CFT correspondence [8], these solutions should be dual to conformal field

theories in four dimensions. Flux quantization renders c discrete. For M6 = CP 3, the

central charge of the CFT dual to these solutions scales as N3, where N is the number

of units of flux on CP 2 ⊂ CP 3 [8]. This suggests that these solutions may have an

interpretation in terms of M5-branes wrapping a 2 cycle. The supergravity approximation

is valid for large N .

The purpose of this paper is to investigate the stability of these solutions. We shall

examine three potential instabilites. First, we check whether there is a non-perturbative

instability due to quantum nucleation of M5-branes (wrapping a 2-cycle in M6) [9, 10].

We find that this does not happen for any M6: the 5-brane (Euclidean) action is always

positive and an instanton describing such a process never exists.

Secondly, we consider perturbative stability by considering linearized supergravity per-

turbations. We determine the full bosonic Kaluza-Klein (KK) spectrum for general M6 in

terms of eigenvalues of differential operators on M6. The gauge group is G × U(1)b2−1,

where G is the isometry group of M6 and b2 the second Betti number of M6. The squared

masses of all fields are non-negative except possibly for scalars arising from (1, 1)-forms

on M6. Demanding that such modes respect the Breitenlöhner-Freedman (BF) stability

bound [11] gives a criterion for stability of these solutions valid for general M6. Analogous

results for Freund-Rubin compactifications of the form AdS4 × M7 were obtained in [12],

and for Freund-Rubin compactifications of other theories in [13].

1 Our conventions are summarized in appendix A.
2 In the case in which M6 is a product of lower-dimensional Kähler-Einstein spaces, i.e., M6 = M4 ×S2,

these solutions can be generalized by taking F = c4J
(4)

∧J(4) +c2J
(4)

∧J(2), where J(4), J(2) are the Kähler

forms on M4 and S2 respectively. This gives a 2-parameter family of solutions with independent radii for

M4 and S2 [3]. Similarly, if M6 = S2
× S2

× S2 then one can obtain a 3-parameter family. We shall not

consider these generalizations further.
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M6 Isometry group Classically stable?

CP 3 SU(4) yes

S2 × S2 × S2 SO(3)3 no

S2 × CP 2 SO(3) × SU(3) no

S2 × dP3 SO(3) × U(1)2 no

S2 × dPk>3 SO(3) ?

SU(3)/T SU(3) ?

Gr2(R
5) SO(5) ?

. . . . . . . . .

Table 1. Classical linearized stability results for particular M6

Our criterion is as follows. Consider transverse, primitive,3 (1, 1)-form eigenfunctions

of the Hodge-de Rham Laplacian on M6 with eigenvalue λ(1,1). A Kähler-Einstein com-

pactification AdS5 × M6 suffers a linearized bosonic instability if, and only if, there is a

mode with

2c2 < λ(1,1) < 6c2. (1.4)

We have investigated the spectrum for some of the M6 listed above. The results are given

in table 1. For M6 = CP 3, the lowest eigenvalue is λ(1,1) = 6c2. Hence AdS5 × CP 3 is

stable at the linearized level in classical supergravity. However, there are scalar fields that

saturate the BF bound. Therefore an analysis of finite N corrections to the mass would be

required to make a definite statement about perturbative stability.4 The scalars saturating

the bound transform in the [0, 2, 0] representation of SU(4).

For M6 = S2 ×M4, one might expect an instability corresponding to the S2 increasing

in radius and M4 decreasing (or vice versa) since this is what happens for product space

Freund-Rubin compactifications [12]. However, such a mode corresponds to λ(1,1) = 0, and

is therefore stable: the flux on the internal space stabilizes the solution against this kind

of deformation. However, we find that there is a mode with λ(1,1) = 4c2 whenever M4

possesses a continuous isometry. This implies that S2 × S2 × S2, S2 × CP 2 and S2 × dP3

give unstable solutions. However dPk has no continuous isometries for k > 3 [15], so the

classical stability of S2 × dPk for k > 3 requires further investigation.

It would be interesting to determine the spectrum for the other homogeneous spaces

Gr2(R
5) and SU(3)/T . We note that SU(3)/T possesses a primitive harmonic (1, 1)-form,

so the lowest eigenvalue is λ(1,1) = 0 in this case, as for the product spaces.

The third possible instability that we have considered is the possibility that quantum

corrections could generate a tadpole for a massless, uncharged, scalar field, resulting in run-

away behaviour [14]. To examine this possibility, we need to investigate whether there are

massless scalars transforming as singlets under G (as no fields are charged under U(1)b2−1).

3“Primitive” means that the contraction with the Kähler form vanishes.
4 These corrections are of two types. Higher derivative corrections give contributions scaling as powers

of 1/N . Quantum loop corrections give contributions scaling as powers of 1/N3.
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A massless scalar will be present if M6 admits complex structure moduli. Now, dPk

has such moduli for k > 4 [15]. Hence M6 = S2 × dPk has such moduli. These are trivially

singlets under G (since dPk has no continuous symmetries for k ≥ 4). Therefore we conclude

that no symmetry prevents quantum corrections from destabilizing compactifications with

M6 = S2×dPk for k > 4, at least at a generic point in moduli space (at special points there

may be discrete symmetries preventing this from happening). Clearly this can happen

whenever M6 has complex structure moduli invariant under G, in particular if M6 has

complex structure moduli and no isometries.

This paper is organized as follows. In section 2, we give a detailed summary of our

results. We first investigate quantum nucleation of M5-branes. We then summarize our

analysis of the Kaluza-Klein spectrum, explain the origin of our stability criterion, and

investigate this criterion for several possible M6. Section 3 contains the full calculation of

the Kaluza-Klein spectrum.

2 Results

2.1 5-brane nucleation

A potential non-perturbative instability involves quantum nucleation of branes [9, 10].

Since the solutions are purely magnetic, we need only consider nucleation of 5-branes. The

(Euclidean) 5-brane action is

S = T

∫

d6ξ
√

h − T

∫

C(6), (2.1)

where T is the 5-brane tension, ξ are worldvolume coordinates, h the determinant of

the induced metric on the worldvolume and C(6) the 6-form potential for ⋆F .5 For the

solutions of interest, ⋆F = 2cη5 ∧ J , where η5 is the volume form of AdS5. We are looking

for instanton solutions so we work in Euclidean signature, writing the metric on Euclidean

AdS5 as

ds2 = dρ2 + ℓ2 sinh2(ρ/ℓ)dΩ2
4. (2.2)

We can choose the gauge (ℓ =
√

2/|c|)

C(6) =
8

c3

[
∫ ρ

0
sinh4(cx/

√
2)dx

]

dΩ4 ∧ J. (2.3)

To get a non-trivial contribution from the flux term in the action, we take the 5-brane

worldvolume to be S4 × Σ where S4 is a sphere of constant ρ in AdS5 and Σ a 2-cycle in

M6. Upon continuing to Lorentzian signature this would give an exponentially expanding

5-brane with worldvolume dS4 × Σ. Evaluating the action on this Ansatz gives

S =
4T

c4
Ω4

[

sinh4(cρ/
√

2)V − 2c

∫ ρ

0
sinh4(cx/

√
2)dx

∫

Σ
J

]

, (2.4)

5Note that the M-theory Chern-Simons term vanishes for these solutions so there are no subtleties in

defining C(6).
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λ λ(1) λ(1,1) λ(2,0) λ(2,1)

c2k(k + 3) c2(k + 2)(k + 4) c2(k + 2)(k + 3) c2(k + 3)(k + 4) c2(k + 2)(k + 4)

[k, 0, k] [k, 1, k + 2] [k, 2, k] [k, 0, k + 4] [k, 1, k + 2]

Table 2. Eigenvalues of the Laplacian on CP 3 acting on transverse primitive forms, determined

from [19]. k is a non-negative integer. λ ≡ λ(0,0), λ(1) ≡ λ(1,0). There are no transverse (3, 0)-forms.

The bottom row gives the corresponding representation of SU(4). If a (p, q)-form eigenfunction

belongs to representation [r, s, t] then the (q, p)-form eigenfunction belongs to the complex conjugate

representation [t, s, r].

where V is the volume of Σ. Varying with respect to ρ gives the condition for a turning

point (for c > 0)

tanh(cρ/
√

2) =

√
2V

∫

Σ J
≥

√
2, (2.5)

where the inequality follows from the fact that J is a calibration in M6. Hence there is no

solution for ρ (the action is positive and monotonically increasing with ρ) so we conclude

that there is no 5-brane nucleation instability.

It would be interesting to investigate more complicated non-perturbative instabilities,

such as the one of [16], which involves simultaneous nucleation of branes and a Kaluza-

Klein bubble. However, since M6 must be simply connected [17], our spacetimes do not

contain a circle that can collapse to zero size at a bubble. Perhaps there could be an

instability involving a bubble describing the collapse of a higher-dimensional submanifold

of spacetime, e.g. an S2 inside M6.

2.2 The Kaluza-Klein spectrum

2.2.1 Harmonics on M6

To determine the KK spectrum, we expand each field in terms of harmonics on M6. These

harmonics satisfy various conditions. In particular, we will be concerned with (p, q)-form

eigenfunctions of the Hodge-de Rham Laplacian

∆6Ŷ(p,q) = λ(p,q)Ŷ(p,q), (2.6)

which are primitive:

JmnŶ(p,q)mn... = 0, (2.7)

and transverse:

d†6Ŷ(p,q) = 0. (2.8)

A hat on a (p, q)-form will be used to denote that it is primitive and transverse. As we

explain below, a general (p, q)-form can be decomposed into a primitive, transverse piece

and pieces built from forms of lower rank.

For CPN , the spectrum of the Laplacian acting on (p, q) forms was determined in [19].

Using these results, one can determine the eigenvalues of the Laplacian acting on transverse

primitive forms on CP 3. These are summarized in table 2.

– 5 –
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We recall a few facts about eigenfunctions of the Hodge-de Rham Laplacian on general

M6 [17, 18]. There are no harmonic (p, 0)-forms so λ(p,0) = λ(0,p) > 0. In particular, this

implies there are no harmonic 1-forms. It also implies that there are no transverse (3, q)-

forms since such forms would be annihilated by both ∂ and ∂†, and hence be harmonic.

For scalars, which we shall take to be real, non-constant eigenfunctions have λ ≥ 4c2.

Eigenfunctions saturating the bound are in one-to-one correspondence with Killing vector

fields. This is because a vector field V on M6 is Killing if, and only if, it can be written as

dc
6Y where Y is a scalar eigenfunction with λ = 4c2.

2.2.2 (1,1)-form perturbations

We perform a full linearized analysis of the bosonic Kaluza-Klein spectrum in section 3.

The result of this analysis is that the only modes that could violate the Breitenlöhner-

Freedman stability bound, indeed the only modes with negative squared mass, arise from

(1, 1)-forms on M6. These are associated with hermitian metric perturbations on M6 (i.e.

perturbations for which, in complex coordinates, the zz and z̄z̄ components of the metric

perturbation vanish). Explicitly, the metric perturbation is

δgmn(x, y) = −
∑

I

hI(x)Ŷ I
(1,1)mp(y)Jp

n. (2.9)

Here we have performed the usual Kaluza-Klein decomposition of modes into a product

of fields in AdS5 and M6. The former are the scalars hI(x). On M6, Ŷ I
(1,1) denotes a

primitive, transverse, (1, 1)-form eigenfunction of the Hodge-de Rham Laplacian, with

eigenvalue λI
(1,1):

∆6Ŷ
I
(1,1) = λI

(1,1)Ŷ
I
(1,1). (2.10)

Modes with different I will decouple from each other. We shall suppress the I index in

what follows.

This metric perturbation will couple to terms in the 4-form perturbation that also arise

from (1, 1)-forms on M6. These are of the form

δF = d
(

k−(x)dc
6Ŷ(1,1)(y)

)

. (2.11)

We can take Ŷ(1,1) to be real hence h and k− are real.

For these modes, the perturbed Maxwell equation reduces to

(∆ + λ(1,1))k
− − 4ch = 0 λ(1,1) 6= 0. (2.12)

The restriction λ(1,1) 6= 0 arises from the fact that if Y(1,1) is harmonic then dc
6Y(1,1) vanishes

hence k− is unphysical. The perturbed Einstein equation reduces to

(∆ + λ(1,1) + 4c2)h − 4cλ(1,1)k
− = 0. (2.13)

Hence if λ(1,1) = 0 then we have a single physical real scalar field h(x) with m2 = 4c2.

However, if λ(1,1) > 0 then we have two fields and we need to diagonalize the above

equations to determine the mass spectrum. Doing so, we find the masses are given by

m2
± = λ(1,1) + 2c2 ±

√

16c2λ(1,1) + 4c4. (2.14)

– 6 –
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m2
+ is positive but m2

− may be negative. An instability occurs if the Breitenlöhner-

Freedman bound is violated, i.e., m2
− < −2c2. This is equivalent to

2c2 < λ(1,1) < 6c2 for instability. (2.15)

If there exists a (primitive, transverse) (1, 1)-form eigenfunction of the Laplacian on M6

with eigenvalue in this range then the solution is unstable.

2.2.3 Stability of CP 3

The results of table 2 give

m2
+ = c2(k + 3)(k + 6), m2

− = c2(k − 1)(k + 2). (2.16)

Hence m2
− ≥ −2c2 so the Breitenlöhner-Freedman bound is respected. However, modes

with k = 0 give scalar fields that can saturate the bound. These fields transform in the

[0, 2, 0] representation of SU(4). Since there is no supersymmetry to protect the masses, it

is necessary to examine whether higher derivative corrections (corresponding to finite N

corrections in the dual CFT) raise or lower the masses of these fields in order to make a

conclusive statement about perturbative stability.

Note that there are also massless fields arising from modes with k = 1, in the [1, 2, 1]

of SU(4). Since these are charged under the SU(4) isometry group, a runaway associated

with these fields is not expected [14].

The dimensions of CFT operators dual to the fields arising from (1, 1)-forms on CP 3

are generically irrational (the special k = 0, 1 fields just mentioned excepted).

2.2.4 Instability of S2 × M4

In Freund-Rubin compactifications, there is generically an instability if the internal space

is a product [1, 12]. The instability arises from a metric deformation of the internal space

in which one factor in the product expands and the other contracts. For product space

Kähler-Einstein compactifications, we shall see that this simple instability is absent but

there is a more complicated instability, at least if M4 has a continuous isometry.

Assume that M6 = S2 ×M4 where M4 is Kähler-Einstein. The Freund-Rubin product

instability arises from (transverse, traceless) metric perturbations of the form

δgmn ∝ h(x)(2g(2)
mn − g(4)

mn), (2.17)

where g
(2,4)
mn are the metrics of S2 and M4 respectively. This is equivalent to a (1, 1)-form

perturbation for which

Ŷ ∝ 2J (2) − J (4), (2.18)

where J (2,4) are the Kähler forms of S2 and M4 respectively (so J = J (2) + J (4)). The

relative factor in the above equation is fixed by the primitivity condition. However, these

are covariantly constant hence Ŷ is harmonic, i.e., λ(1,1) = 0, so these modes do not lie

within the “window of instability” of equation (2.15): they are stable. The presence of flux

on the internal space stabilizes it against this kind of deformation.

– 7 –
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To obtain an instability we need to look at more complicated modes. Consider M6 =

S2 × S2 × S2 (i.e. M4 = S2 × S2). Let yi be coordinates, and J (i) the Kähler form, of the

ith S2. Let Y be a λ = 4c2 scalar eigenfunction on S2, which must exist because S2 admits

Killing vector fields. Now consider the following primitive, transverse, (1, 1)-form on M6:

Ŷ = (Y (y2) − Y (y3))J (1)(y1)+(Y (y3) − Y (y1)) J (2)(y2)+(Y (y1) − Y (y2)) J (3)(y3). (2.19)

A calculation reveals that this is an eigenfuction of ∆6 with eigenvalue λ(1,1) = 4c2, i.e., a

mode within the range (2.15). Hence M6 = S2 × S2 × S2 is an unstable compactification.

A similar construction works whenever M4 admits a Killing vector field. Let Y be a

scalar harmonic on M4 with eigenvalue λ. From this we can build a suitable (1, 1)-form

by considering an arbitrary linear combination of d4d
c
4Y , Y J (4) and Y J (2) (where d4 is

the exterior derivative on M4), and fixing the coefficients by demanding primitivity and

transversality. This gives

Ŷ = d4d
c
4Y − λY J (4) − 2λY J (2). (2.20)

This is a (1, 1)-form eigenfunction of ∆6 with eigenvalue λ. If M4 admits a Killing vector

field then there exists a mode with λ = 4c2 and hence, from (2.15), an instability. It

follows that the S2 × CP 2 and S2 × dP3 are unstable compactifications. However, the

Kähler-Einstein metric on dPk does not admit continuous symmetries for k > 3 [15] so we

cannot conclude that S2 × dPk is unstable for k > 3 using this method (unless it could be

shown that the lowest non-trivial eigenfunction of the scalar Laplacian on dPk has λ < 6c2).

2.2.5 The full bosonic KK spectrum

In section 3 we determine the full spectrum of bosonic KK excitations. The results are

summarized in table 3. Note that there are some curious degeneracies between 2-form,

1-form and scalar fields.

For CP 3, plugging in the known eigenvalues of the Laplacian acting on (p, q)-forms

(table 2) gives the mass spectrum of table 4. The eigenvalue λ
(0,1)
(1,0) can be determined from

the eigenvalue of the Lichnerowicz operator acting on anti-hermition tensor modes (see

section 3.5.7). The general form of these eigenvalues in terms of a non-negative integer k

is known [20] but the precise lower bound on k is not (i.e. the smallest allowed value of k

may be positive).

2.2.6 The massless spectrum

In addition to the AdS5 graviton, there are massless vector and scalar fields. There is a

massless vector for each Killing vector field on M6 (associated with λ = 4c2 scalar har-

monics). These are the usual KK gauge bosons. Massless vectors also arise from primitive

harmonic (1, 1)-forms on M6. These are familiar from Freund-Rubin compactifications [1]

except that here we have the primitivity condition. There are b2 − 1 primitive harmonic

(1, 1)-forms hence the gauge group of the effective 5d theory is G × U(1)b2−1.

Massless scalar fields need special consideration because, as discussed in the introduc-

tion, the presence of uncharged massless scalars may lead to a runaway instability arising

– 8 –
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Field Type m2 Restriction Section

Spin-2 real λ 3.5.1

2-form complex
(√

λ(1) + c2 ± c
)2

λ(1) > 0 3.5.2

real λ + 4c2 λ > 0 3.5.3

1-form complex λ(2,0) λ(2,0) > 0 3.5.4

real λ(1,1) 3.5.4

complex
(√

λ(1) + c2 ± c
)2

λ(1) > 0 3.5.5

real λ + 4c2 λ > 0 3.5.6

real λ + 6c2 ±
√

(λ + 6c2)2 − λ(λ − 4c2) only + if λ = 0 3.5.6

Scalar complex λ(2,1) 3.5.8

complex λ(2,0) λ(2,0) > 0 3.5.9

real λ(1,1) + 2c2 ±
√

16c2λ(1,1) + 4c4 only + if λ(1,1) = 0 2.2.2

complex λ
(0,1)
(1,0) 3.5.7

complex
(√

λ(1) + c2 ± c
)2

λ(1) > 0 3.5.10

real λ + 4c2 λ > 0 3.5.11

real λ + 6c2 ±
√

(λ + 6c2)2 − λ(λ − 4c2) only + if λ = 0 3.5.11

real 0 (axion) 3.5.11

Table 3. The bosonic Kaluza-Klein spectrum. M6 does not admit harmonic (p, 0)-forms, so

λ(p,0) > 0. The other restrictions in this table arise because the associated modes are unphysical,

i.e., give vanishing metric and 4-form perturbations. λ
(0,1)
(1,0) is the eigenvalue of the Laplacian acting

on (1, 0)-forms taking values in the anti-holomorphic tangent space of M6 (which vanishes for

infinitesimal complex structure deformations).

from a tadpole generated by quantum corrections [14]. Massless scalars arise in several

ways. First, dualizing the KK zero mode of the M-theory 3-form in AdS5 gives a scalar

axion. Classically, this field has a continuous shift symmetry. However, quantum mechan-

ically, the axion may develop a potential generated by M5-brane instantons wrapped on

M6. This would break the shift symmetry to a discrete shift symmetry. In either case, the

symmetry protects the axion from runaway behaviour.

Second, each Killing field on M6 gives rise to a real massless scalar, which together

transform in the adjoint on G. If G has rank 3 or greater (i.e. if M6 has at least U(1)3

isometry group - in other words, M6 is toric) then the presence of these scalars can be

understood from the fact that solution generating transformations can be used to generate

continuous deformations of our background [21]. The moduli associated with these defor-

mations correspond to massless scalar fields with exactly flat potentials and these must be

at least a subset of the massless scalars arising from Killing fields on M6. If G is simple

then it acts transitively on the latter (since they transform in the adjoint of G), and hence

they must all be moduli. This is the case for CP 3.

If G has an abelian factor then the massless scalar associated with the abelian generator

is uncharged hence a runaway is possible. For the spaces listed in table 1, this happens
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Field Type m2/c2 (k = 0, 1, 2, . . .)

Spin-2 real k(k + 3)

2-form complex (k + 2)2, (k + 4)2

real (k2 + 5k + 8)

1-form complex (k + 3)(k + 4)

real (k + 2)(k + 3)

complex (k + 2)2, (k + 4)2

real (k2 + 5k + 8)

real k(k + 1), (k + 3)(k + 4)

Scalar complex (k + 2)(k + 4)

complex (k + 3)(k + 4)

real (k − 1)(k + 2), (k + 3)(k + 6)

complex (k + 1)(k + 4) k ≥ ?

complex (k + 2)2, (k + 4)2

real (k2 + 5k + 8)

real k(k + 1), (k + 3)(k + 4)

real 0 (axion)

Table 4. The bosonic Kaluza-Klein spectrum for CP 3. The values of k have been shifted to take

account of the restrictions in table 3: k is everywhere a non-negative integer except in the row

corresponding to λ
(0,1)
(1,0) (see main text).

only for S2 × dP3 but we have already seen that this is unstable even at the classical level.

Third, if M6 admits infinitesimal complex structure deformations then these will give

complex massless scalars. These are present e.g. for S2 × dPk>4 [15]. Since these are

uncharged (because dPk>4 has no continuous isometries), this suggests that these spaces

will indeed suffer from a runaway instability.

Fourth, massless (complex) scalars arise if M6 admits primitive harmonic (2, 1)-forms.

These will be gauge singlets since harmonic forms are invariant under continuous isometries.

Hence such scalars could lead to a runaway instability. However, primitive harmonic (2, 1)-

forms do not arise for the spaces listed in table 1.

Finally, massless scalars arise if there are (transverse, primitive) (1, 1)-form harmonics

with eigenvalue λ(1,1) = 12c2. One would expect these to be charged in general so they

will not generate a runaway. Such scalars are present for CP 3 and transform in the [1, 2, 1]

representation of SU(4).

3 The Kaluza-Klein spectrum

3.1 Decomposition of fields on M6

On M6, we can decompose a (p, q)-form into its primitive part and a non-primitive part:

X(p,q) = X0(p,q) + J ∧ X(p−1,q−1), (3.1)
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where a subscript 0 denotes a primitive form. We can further decompose a primitive form

into a transverse part and exact pieces. Let Λ
(p,q)
0 denote the space of primitive (p, q)-forms.

Define a map F : Λ
(p−1,q)
0 + Λ

(p,q−1)
0 → Λ

(p,q)
0 by

F(Y0(p−1,q) + Z0(p,q−1)) =
[

∂Y0(p−1,q) + ∂̄Z0(p,q−1)

]

0
, (3.2)

where [. . .]0 denotes the primitive part. For given X0(p,q), choose Y0(p−1,q) and Z0(p,q−1)

to minimize the inner product of F(Y0(p−1,q) + Z0(p,q−1)) with X0(p,q). This results in the

orthogonal decomposition

X0(p,q) = X̂(p,q) +
[

∂Y0(p−1,q) + ∂̄Z0(p,q−1)

]

0
, (3.3)

where the hat denotes a form that is both primitive and transverse:

d†X̂(p,q) = 0 ⇔ ∂†X̂(p,q) = ∂̄†X̂(p,q) = 0. (3.4)

For example, we can decompose a general 1-form as

X1 = X̂(1,0) + X̂(0,1) + ∂X + ∂̄Y, (3.5)

where X and Y are scalars. Using the above decomposition in two steps shows that a

general 2-form can be decomposed into terms involving only primitive transverse forms as

X2 = X̂(2,0) + X̂(1,1) + X̂(0,2) + ∂X̂(1,0) + ∂̄X̂(0,1) + ∂Ŷ(0,1) + ∂̄Ŷ(1,0) +
[

∂∂̄Y
]

0
+ JX. (3.6)

To avoid a proliferation of terms, we shall find it more convenient to work with n-forms,

rather than (p, q)-forms, for most of our calculations. Note that, in the decomposition of a

n-form Xn into (p, q)-forms of definite type, the individual (p, q)-forms will be transverse

if, and only if, Xn is “doubly transverse”, i.e.,

d†X = dc†X = 0, (3.7)

where

dc = −i(∂ − ∂̄). (3.8)

Hence we can rewrite the 1-form decomposition as (redefining X and Y )

X1 = X̂1 + dX + dcY, (3.9)

and the 2-form decomposition can be rewritten as

X2 = X̂2 + dX̂1 + dcŶ1 + ddcY + JX, (3.10)

where a hat on a n-form denotes that the form is primitive and doubly transverse. In

the penultimate term of the 2-form decomposition, we have removed the square brackets

from ddcY , which amounts to shifting the scalar X in the final term. Without the square

brackets, the final two terms are no longer orthogonal but they are still linearly independent.
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A 3-form X3 can be decomposed as

X3 = X̂3 + dX̂2 + dcŶ2 + ddcX̂1 + J ∧
(

Ŷ1 + dX + dcY
)

. (3.11)

Now consider a symmetric tensor hmn. This can be decomposed into its hermitian and

anti-hermitian parts:

hmn = Hmn + Amn, Jm
pJn

qHpq = Hmn, Jm
pJn

qApq = −Amn. (3.12)

The hermitian part is equivalent to a (1, 1)-form X:

Hmn = −X(1,1)mpJ
p
n. (3.13)

X can be decomposed as described above. The anti-hermitian part Amn can be split into

its (2, 0) and (0, 2) parts. Consider the map F from (1, 0)-forms to symmetric (2, 0) tensors

defined by

F(X(1,0))mn = ∇+
(mXn), (3.14)

where ∇±
m denote the projection of of ∇m onto its (1, 0) and (0, 1) parts respectively. The

space of (2, 0) symmetric tensors has the orthogonal decomposition Im(F) + Ker(F†) and

there is a similar decomposition for (0, 2) symmetric tensors so we can write

Amn = Âmn + ∇+
(mYn)(1,0) + ∇−

(mYn)(0,1), (3.15)

where Âmn is a transverse anti-hermitian tensor:

∇mÂmn = 0. (3.16)

3.2 Decomposition of perturbation

Consider a small perturbation of the solution:

δgMN = hMN , δFMNPQ = fMNPQ. (3.17)

The Bianchi identity implies df = 0 hence f = da for some 3-form a.6

The AdS5 components of the metric perturbation transform as a scalar on M6 and can

be expanded in eigenfunctions of the Hodge-de Rham Laplacian on M6:

hµν(x, y) =
∑

I

hI
µν(x)Y I(y), (3.18)

where ∆6Y
I = λIY I . Decomposing hI

µν into transverse parts gives

hµν(x, y) =

(

Hµν(x) + 2∇(µHν)(x) + 2∇µ∇νH(x) +
1

5
T (x)gµν

)

Y (y), (3.19)

6M6 admits at least one harmonic 4-form (i.e. J ∧ J) but we assume that f vanishes at infinity in AdS5

so we don’t need to include a contribution to f proportional to such a form.
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where Hµν and Hµ are transverse. The I index and the summation are suppressed here, and

henceforth. The gauge freedom hMN → hMN + 2∇(M ξN) with ξµ(x, y) = −(Hµ +∇µH)Y

and ξm = 0 can be used to fix the gauge

Hµ = H = 0. (3.20)

The mixed components of the metric perturbation can be decomposed as

hµm = (Z1 + dZ)µŶ1m + (Z+
1 + dZ+)µ(dY )m + (Z−

1 + dZ−)µ(dcY )m, (3.21)

where Z1 and Z±
1 are transverse 1-forms in AdS5 and Ŷ1 is a doubly transverse 1-form on

M6.

As described above, the internal components of the metric perturbation can be decom-

posed into hermitian and anti-hermitian parts, and the hermitian part written in terms of

a (1, 1)-form:

hmn = −X(1,1)mpJ
p
n + Amn. (3.22)

We decompose X(1,1) as described above:

X(1,1) = h(x)Ŷ(1,1)(y) + 2N (1,0)(x)∂̄Ŷ(1,0)(y) + 2N (0,1)(x)∂Ŷ(0,1)(y)

+Q(x)ddcY +
1

6
JmnS(x)Y (y), (3.23)

where Ŷ(1,1) is primitive and transverse and Ŷ(1,0), Ŷ(0,1) are transverse. Note that N (0,1)

and N (1,0) are (complex conjugate) scalar fields in AdS. It is convenient to suppress the

indices on N and write this as

X(1,1) = hŶ(1,1) + NdŶ1 + MdcŶ1 + QddcY +
1

6
JmnSY, (3.24)

where NdŶ1 ≡ N (1,0)dŶ(1,0) + N (0,1)dŶ(0,1), MdcŶ1 ≡ M (1,0)dcŶ(1,0) + M (0,1)dcŶ(0,1) and

M (1,0) = −iN (1,0), M (0,1) = iN (0,1). (3.25)

We will sometimes write this as M = ∓iN where the upper and lower signs refers to (1, 0)

or (0, 1) respectively.

The anti-hermitian part Amn can be decomposed as in (3.15):

Amn(x, y) = A(x)ŶTmn(y) + B(1,0)(x)∇+
(mYn)(1,0)(y) + B(0,1)(x)∇−

(mYn)(0,1)(y), (3.26)

where ŶTmn denotes a transverse anti-hermitian tensor eigenfunction of the Lichnerowicz

operator on M6:

∆LYTmn ≡ −∇2YTmn − 2RmpnqY
pq
T + 4c2YTmn = λT YT . (3.27)

A gauge transformation with ξµ = 0 and ξm = −(1/2)(B(1,0)Ym(1,0) + B(0,1)Ym(0,1)) can be

used to set

B(1,0) = B(0,1) = 0. (3.28)

– 13 –



J
H
E
P
0
3
(
2
0
0
9
)
0
0
2

Note that this gauge transformation preserves (3.20). There is some residual gauge freedom:

ξµ = kµ(x)Y (y), ξm = α(x)Vm(y), (3.29)

where kµ and Vm are Killing vector fields in AdS5 and M6 respectively. As discussed above,

the latter can always be written in terms of scalar harmonics [17, 18]

Vm = (dcY )m, ∆6Y = 4c2Y. (3.30)

The decomposition of the 3-form is:

a = jY(3) + k+dY(2) + k−dcY(2) + (p1 + dp) ∧ Y(2) + ℓddcY(1) + mJ ∧ Y(1)

+(q+
1 + dq+) ∧ dY(1) + (q−1 + dq−) ∧ dcY(1) + (t2 + dt1) ∧ Y(1)

+(r1 + dr) ∧ ddcY + (u+
2 + du+

1 ) ∧ dY + (u−
2 + du−

1 ) ∧ dcY

+n+J ∧ dY + n−J ∧ dcY + (s1 + ds) ∧ JY + (w3 + dw2)Y. (3.31)

We remind the reader that a sum over harmonics is understood, i.e., jY(3) stands for

jI(x)Y I
(3)(y). j, k± etc are scalars in AdS5, p1, q±1 etc are transverse vectors in AdS5, u±

2 etc

are transverse 2-forms in AdS5. We are also using the shorthand notation introduced above,

e.g., t2∧Y1 stands for t
(1,0)
2 ∧Y(1,0)+t

(0,1)
2 ∧Y(0,1) where t

(1,0)
2 and t

(0,1)
2 are complex conjugate

2-forms. In the final term, it will sometimes be convenient to rewrite the transverse 3-form

w3 in terms of a transverse 1-form v1:

w3 = ⋆5dv1. (3.32)

The 3-form a has gauge freedom a → a + dΛ for some 2-form Λ. However, the quantities

in the above decomposition must arrange themselves into gauge-invariant combinations

when we calculate the 4-form f . Computing f reveals that there is no loss of generality in

imposing the gauge conditions

u+
1 = q+ = r = p = ℓ = s = t1 = r1 = w2 = 0. (3.33)

We then have

f = jdY3 + k−ddcY2 + mJ ∧ dY1 + n−J ∧ ddcY

+dj ∧ Y3 − (p1 − dk+) ∧ dY2 + dk− ∧ dcY2 − (q−1 + dq−) ∧ ddcY1

+dm ∧ J ∧ Y1 − (s1 − dn+) ∧ J ∧ dY + dn− ∧ J ∧ dcY

+dp1 ∧ Y2 + (t2 + dq+
1 ) ∧ dY1 + dq−1 ∧ dcY1 + (u−

2 + du−
1 ) ∧ ddcY + ds1 ∧ JY

+dt2 ∧ Y1 + (−w3 + du+
2 ) ∧ dY + du−

2 ∧ dcY

+dw3Y (3.34)

There is some ambiguity in the decomposition of the AdS5 fields into a transverse part and

an exact part. An expression of the form Vp + dVp−1, where Vp and Vp−1 are transverse

forms in AdS5, is invariant under

Vp−1 → Vp−1 + δVp−1, Vp → Vp − dδVp−1 (3.35)

where δVp−1 is transverse and satisfies the equation of motion of a massless field in AdS5:

∆δVp−1 = 0. (3.36)
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3.3 The Maxwell equation

Perturbing the Maxwell equation gives

⋆ d ⋆ f + ⋆dδ(⋆)F̄ = ⋆
(

f ∧ F̄
)

, (3.37)

where a bar refers to the unperturbed solution and δ(⋆)F̄ denotes the change in ⋆F̄ resulting

from the metric perturbation. In evaluating this equation, the following results are useful.

Let Xp and Yq denote a p-form in AdS5 and a q-form in M6 respectively. Then

⋆ (Xp ∧ Yq) = (−)pq(⋆5Xp) ∧ (⋆6Yq), (3.38)

Now take q = 4 − p with Xp ∧ Y4−p a typical term in the decomposition of the Maxwell

perturbation f . On the l.h.s. of the Maxwell equation we will encounter terms of the form

⋆ d ⋆ (Xp ∧ Y4−p) = −
(

d†5Xp

)

∧ Y4−p + (−)p+1Xp ∧ d†6Y4−p. (3.39)

The metric perturbation also enters the l.h.s. of the Maxwell equation. We find

⋆ dδ(⋆)F = −cJ ∧ dc
6h

M
M + 4cdc

6X(1,1) + cJ ∧ d†6X(1,1)

−2cd†5X
′
1J ∧ J · Y ′

1 + 2cX ′
1 ∧ dc

6(J · Y ′
1) + 2cX ′

1 ∧ J ∧ d†6(J · Y ′
1), (3.40)

where X ′
1, Y ′

1 denote the various terms arising from the mixed components hµm, i.e., hµm is

a sum of terms of the form (X ′
1)µ(Y ′

1)m, and the corresponding sum should be understood

in the above expression.

Using these results, the Maxwell equation decomposes as follows. The µνρ components

give

λ ⋆ du+
2 + 2cλu−

2 + d
[

(∆ + λ)v1 + 2cλu−
1 + 6cs1

]

= 0. (3.41)

The µνm components describe 1-forms on M6. These can be decomposed into a transverse

1-form part, arising from terms proportional to Ŷ1m and scalar parts proportional to dY

and dcY respectively. The transverse (1, 0)-form part is (t2 denotes t
(1,0)
2 etc)

(∆ + λ1)t2 + λ1dq+
1 + 2ic ⋆ dt2 = 0. (3.42)

The transverse (0, 1)-form part is the complex conjugate of this. Now λ1 6= 0 (see above)

so acting on this equation with d† gives ∆q+
1 = 0. This implies that q+

1 can be gauged

away using the freedom (3.35), i.e., we can absorb q+
1 into t2. So we set q+

1 = 0 henceforth.

This leaves

(∆ + λ1)t2 + 2ic ⋆ dt2 = 0. (3.43)

The terms proportional to dY give the same equation as d acting on (3.41), while the terms

proportional to dcY give

(∆ + λ)u−
2 − 2c ⋆ du+

2 + d
[

λu−
1 + s1 − 2cv1

]

= 0, λ 6= 0. (3.44)

The restriction λ 6= 0 arises because otherwise dcY = 0. The 1-form and 2-form parts of this

equation and equation (3.41) can be decoupled using the gauge freedom (3.35). Consider
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a transformation u−
1 → u−

1 + δu−
1 , v1 → v1 + δv1, u−

2 → u−
2 − dδu−

1 , u+
2 → u+

2 + δu+
2 ,

with ∆δv1 = ∆δu−
1 = 0 and δu+

2 is defined by dδu+
2 = ⋆dδv1. This leaves the 4-form

invariant. Acting with d† on the above equations implies that the square brackets in

both are annihilated by ∆. This implies that we can choose δu−
1 and δv1 to make these

brackets vanish. Hence the 2-form and 1-form parts of these equations decouple. The

2-form equations give

⋆ du+
2 + 2cu−

2 = 0, λ 6= 0, (3.45)

and (after using this equation to eliminate u+
2 ),

(∆ + λ + 4c2)u−
2 = 0, λ 6= 0. (3.46)

Hence u−
2 is a massive 2-form field with m2 = λ + 4c2, and u+

2 is not independent. If

λ = 0 then u±
2 drop out of the expression for f and are therefore unphysical. The 1-form

equations are

(∆ + λ)v1 + 2cλu−
1 + 6cs1 = 0, (3.47)

λu−
1 + s1 − 2cv1 = 0, λ 6= 0. (3.48)

The µmn components of the Maxwell equation correspond to 2-forms on M6, which can be

decomposed into irreducible pieces as described above. The terms proportional to Ŷ2 give

∆p1 + λ2(p1 − dk+) = 0, which implies that ∆k+ = 0 so we can absorb k+ into p1 using

the residual freedom (3.35). This leaves

(∆ + λ2) p1 = 0. (3.49)

Hence p1 is a vector field with m2 = λ2. The terms proportional to dŶ1 vanish when we

use q+
1 = 0. The terms proportional to dcŶ1 give, for a (1, 0)-form Ŷ1 (so q−1 denotes q

−(1,0)
1

etc, (0, 1)-forms give the complex conjugate of this) a 1-form part7

(∆ + λ1) q−1 + 2icZ1 = 0, (3.50)

and a scalar part

λ1q
− − m + 2icZ = 0. (3.51)

The terms proportional to ddcY give (NB ddcY = 0 if, and only if, λ = 0) a 1-form part

∆u−
1 − s1 − 2cZ−

1 = 0 λ 6= 0, (3.52)

and a scalar part

n+ = 2cZ− λ 6= 0. (3.53)

The terms proportional to JY give 1-form part

∆s1 + λs1 + 2cλZ−
1 − 2c∆v1 = 0. (3.54)

7The split into 1-form and scalar parts uses the freedom (3.35) as described above. Strictly speaking, this

can only be done once we have the complete set of equations governing these fields, but we shall anticipate

the final result and split the equations as we encounter them.
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and the scalar part reproduces (3.53).

Finally, we consider the mnp components of the Maxwell equation. These transform

as a 3-form on M6, which can be decomposed as described above. Doing so, the terms

proportional to Ŷ3 give

(∆ + λ3)j = 0, (3.55)

so the scalar field j has m2 = λ3. The terms proportional to dŶ2 vanish (using k+ = 0).

Terms proportional to dcŶ2 give (if λ2 = 0 then Ŷ2 is harmonic so dcŶ2 = 0)

(∆ + λ2)k
− − 4ch = 0 λ2 6= 0. (3.56)

Terms proportional to ddcŶ1 give

∆q− + m − 4cN = 0. (3.57)

Terms proportional to J ∧ Ŷ1 give (this comes from the (1, 0) part of Ŷ1, the (0, 1) part

gives the complex conjugate)

(∆ + λ1)m − 4cλ1N − 2ic∆Z = 0, (3.58)

Terms proportional to J ∧ dY vanish upon using (3.53). Terms proportional to J ∧ dcY

give

(∆ + λ)n− + cT − 1

3
cS − 2cλQ + 2c∆Z+ = 0 λ 6= 0. (3.59)

3.4 The Einstein equation

The perturbed Einstein equation is

δRMN = δSMN , (3.60)

where

δRMN = −1

2

(

∇2
5 + ∇2

6

)

hMN − 1

2
∇M∇NhP

P + ∇(M∇P hN)P − R̄MPNQhPQ + R̄P
(MhN)P ,

(3.61)

and

δSMN =
1

12

[

2f(M |PQR|F̄N)
PQR − 3F̄MPRS F̄NQ

RShPQ − 1

12
hMN F̄PQRSF̄PQRS

− 1

12
ḡMN

(

2fPQRSF̄PQRS − 4F̄PRST F̄Q
RST hPQ

)

]

.(3.62)

Evaluating the µν components and decomposing into irreducible parts gives transverse

traceless tensor part

−∇2
5Hµν + (λ − c2)Hµν = 0, (3.63)

so Hµν is a massive spin-2 field, for λ = 0 we obtain the massless AdS5 graviton. The

1-form part is

∇(µZ+
1ν) = 0 λ 6= 0, (3.64)
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which implies that Z+
1 can be gauged away using the residual gauge invariance (3.29). (If

λ = 0 then Z+
1 drops out of hµm so is unphysical.) Hence we set Z+

1 = 0 henceforth. Terms

of the form ∇µ∇ν(scalar) give

λQ +
1

2
S +

3

10
T + λZ+ = 0, (3.65)

and terms proportional to ḡµν give

1

10

(

∆ + λ + 4c2
)

T +
4

3

(

cλn− − c2S − 2c2λQ
)

= 0. (3.66)

The µm components of the Einstein equation can be decomposed into transverse 1-form

and scalar parts on M6. These can then be decomposed into transverse 1-form and scalar

parts on AdS5. The transverse (1, 0)-form part gives AdS5 1-form equation

1

2
(∆ + λ1 + 4c2)Z1 − icλ1q

−
1 = 0, (3.67)

and the AdS5 scalar part is

1

2
λ1(Z + iN − 2icq−) + 2icm + 2c2Z = 0. (3.68)

From terms proportional to dY we obtain vanishing AdS5 1-form part (using Z+
1 = 0).

The scalar part is

λQ +
5

6
S +

4

5
T − 4cn− − 4c2Z+ = 0 λ 6= 0. (3.69)

From terms proportional to dcY we obtain 1-form part

(

∆ + λ + 4c2
)

Z−
1 + 4cs1 = 0 λ 6= 0, (3.70)

and scalar part

(λ + 4c2)Z− = 4cn+ λ 6= 0. (3.71)

Combining this with (3.53) gives

n+ = Z− = 0, (3.72)

unless λ = 0 or λ = 4c2. In the former case, n+ and Z− are unphysical. The latter case

corresponds to a harmonic Y for which dcY is a Killing field on M6. In this case, we can

use the residual gauge freedom (3.29) to set Z− = 0 so equation (3.53) gives n+ = 0. Hence

equation (3.72) is satisfied in general.

Next consider the mn components of the Einstein equation, which only involve AdS5

scalars. First we decompose these into hermitian and anti-hermitian parts. The transverse

anti-hermitian part gives
(

∆ + λT − 4c2
)

A = 0, (3.73)

where λT is an eigenvalue of the Lichnerowicz operator on M6 corresponding to tranverse

anti-hermitian modes. The anti-hermitian part also has transverse 1-form, and scalar parts.

The transverse (1, 0)-form part is

∆Z − iλ1N = 0. (3.74)
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After using Z− = 0, the scalar part, proportional to ∇±
m∇±

n Y gives

∆Z+ +
1

3
S +

1

2
T = 0 λ 6= 0. (3.75)

The hermitian part of the mn Einstein equation can be converted to a (1, 1)-form and

decomposed as described above. The transverse primitive part gives
(

∆ + λ(1,1) + 4c2
)

h(1,1) − 4cλ(1,1)k
−(1,1) = 0. (3.76)

The transverse vector part gives
(

∆ + λ1 + 4c2
)

N − 2cm = 0. (3.77)

The scalar part proportional to ddcY gives
(

∆ + λ + 4c2
)

Q − 4cn− = 0 λ 6= 0. (3.78)

The scalar part proportional to JY gives
(

∆ + λ + 12c2
)

S − 8cλn− + 16c2λQ = 0. (3.79)

3.5 The mass spectrum

In this section we shall diagonalize the above equations to determine the full Kaluza-Klein

spectrum.

3.5.1 Symmetric tensor/scalar modes

This sector contains just the real, transverse, traceless, symmetric tensor field Hµν with

equation of motion (3.63). For λ = 0 this gives the AdS5 graviton. λ > 0 gives massive

spin-2 fields.

3.5.2 2-form/1-form modes

In this sector we have the complex field t2. The equation of motion is (3.43). To obtain

the mass associated with this field, we note that a complex 2-form in AdS5 has a first

order equation of motion [22], so t2 is actually equivalent to two complex 2-form fields.

Equation (3.43) can be decomposed into first order equations by defining

Z2 = t2 + ia ⋆5 dt2, (3.80)

and seek a so that ⋆5dZ2 ∝ Z2. This requires λ1a
2 +2ac−1 = 0, so there are two solutions:

λ1a± = ∓
√

λ1 + c2 − c. Hence there are two linearly independent solutions Z±
2 . Obviously

t2 can be written as a linear combination of these two fields. We then have

⋆ dZ±
(2) = −ia±λ1Z

±
2 . (3.81)

This is the equation of motion of a complex 2-form with mass given by m2
± = (a±λ1)

2 (see

e.g. [22]). To see this, note that acting with ⋆d gives

(∆5 + (a±λ1)
2)Z±

2 = 0. (3.82)

Hence we have two complex 2-form fields of definite mass, namely Z±
(2), with masses given by

m± =
√

λ1 + c2 ± c. (3.83)

As discussed above, λ1 > 0 so these fields are both massive.
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3.5.3 2-form/scalar modes

In this section we have the real fields u±
2 . u+

2 is given in terms of u−
2 by equation (3.45),

and u−
2 has equation of motion (3.46). Hence this sector contains a single real 2-form with

m2 = λ + 4c2, λ > 0.

3.5.4 1-form/2-form modes

The only field in this sector is p1, with equation of motion (3.49). This can be decomposed

into the complex field p
(2,0)
1 (with complex conjugate p

(0,2)
1 ) with m2 = λ(2,0) and a real

field p
(1,1)
1 (since we can take (1, 1)-form eigenfunctions of ∆6 to be real) with m2 = λ(1,1).

Note that (primitive, transverse) harmonic 2-forms give rise to massless 1-forms in AdS5.

3.5.5 1-form/1-form modes

In this sector we have the complex 1-form fields q−1 and Z1 (or, more precisely, q
−(1,0)
1 and

Z
(1,0)
1 ) with equations of motion (3.50), (3.67). (We saw above that q+

1 can be gauged

away.) Diagonalizing gives the masses as

m2 = λ1 + 2c2 ±
√

(λ1 + 2c2)2 − λ2
1. (3.84)

These fields are all massive (because λ1 > 0).

3.5.6 1-form/scalar modes

The fields in this sector are v1, u−
1 , s1 and Z−

1 . (We saw above that equation (3.64) implies

that Z+
1 can be gauged away.) These fields are real. They are governed by the equations

of motion (3.47), (3.52), (3.54), (3.70) and the constraint (3.48).

Consider first the case λ = 0. In this case, the only physical fields are s1 and v1 and

the only non-trivial equations are (3.47), which gives ∆v1 + 6cs1 = 0, and (3.54), which

gives ∆(s1 − 2cv1) = 0. Combining these gives

∆(s1 − 2cv1) = 0,
(

∆ + 12c2
)

s1 = 0, λ = 0. (3.85)

Hence s1 − 2cv1 is massless and s1 has m2 = 12c2. Recall that v1 arises from the AdS5

components of the M-theory 3-form via w3 = ⋆dv1. Hence the massless field we have found

here is essentially the Kaluza-Klein zero mode of the M-theory 3-form. This massless 3-

form can be dualized to a scalar via d(w3 − (1/2c) ⋆ ds1) = ⋆dσ. This scalar has a gauge

invariance σ ∼ σ + constant.

Now consider the case λ 6= 0. It can be verified that the constraint equation (3.48)

is consistent with the four equations of motion. This constraint can be used to eliminate,

say, s1. This leaves three fields. The equations of motion can be combined to give

(

∆ + λ + 4c2
)

(v1 − Z−
1 ) = 0 λ 6= 0, (3.86)

so v1 − Z−
1 is a field with m2 = λ + 4c2. The remaining two mass eigenstates can be

identified by setting U1 = u−
1 +αv1 +β(Z−

1 −v1) and choosing α, β so that (∆+m2)U1 = 0
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for some m. This gives β = 1/(2λα + 2c), α = (−3c ∓
√

9c2 + 4λ)/(2λ). Denote the

corresponding linear combinations as U1±. Their masses are

m2
± = λ + 6c2 ±

√

(λ + 6c2)2 − λ(λ − 4c2) λ 6= 0. (3.87)

Hence, for λ = 4c2, U1− is a massless real vector field. But scalar modes with λ = 4c2

are in one-to-one correspondence with Killing vector fields on M6. Hence these massless

vectors must be the Kaluza-Klein gauge bosons.

3.5.7 Scalar/anti-hermitian tensor modes

A symmetric anti-hermitian tensor can be decomposed into (2, 0) and (0, 2) parts, so we

have two complex conjugate fields A(2,0) and A(0,2), with equation of motion given by (3.73).

Hence we have m2 = λT − 4c2. This can be seen to be non-negative using the following

standard argument that relates anti-hermitian eigenfunctions of the Lichnerowicz operator

to complex structure deformations [17].

Consider an anti-hermitian (2, 0) tensor eigenfunction Ŷmn with eigenvalue λ. Raising

an index, we have a tensor Ŷ m
n which can be regarded as a (0, 1)-form taking values in

T 1,0M6, the holomorphic tangent space of M6. For a (0, q)-form ω taking values in T 1,0M6

we define

(∂̄ω)mnp1...pq
= (q + 1)∇−

[nωm
p1...pq], (3.88)

where ∇−
m denote the (0, 1) part of ∇m. For any two such forms ω, ν we define the obvious

inner product

(ω, ν) =
1

q!

∫

ωm
n1...np

gmm′gn1n′

1 . . . gnpn′

p ν̄m′

n′

1...n′

p

. (3.89)

We can then defines the adjoint ∂̄†. Transversality implies that (∂̄†Y )m = 0. Now define the

Laplacian acting on (0, q)-forms taking values in T 1,0M6 by ∆∂̄ ≡ 2
(

∂̄∂̄† + ∂̄†∂̄
)

. Acting

on Y , we find that

(∆∂̄Y )mn = [(∆L − 4c2)Y ]mn = (λT − 4c2)Y m
n . (3.90)

Hence the mass of the complex scalar in this sector is given by

m2 = λ
(1,0)
(0,1)

, (3.91)

where λ
(1,0)
(0,1)

denotes the eigenvalues of ∆∂̄ . These are manifestly non-negative. Modes with

m = 0 correspond to infinitesimal deformations of the complex structure of M6.

3.5.8 Scalar/3-form modes

The only field here is j, or, more precisely, the complex scalar j(2,1). The equation of

motion is (3.55) so j(2,1) has m2 = λ(2,1). There are no transverse (3, 0)-forms hence there

is no j(3,0) part.
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3.5.9 Scalar/2-form modes

The fields in this sector are h and k−. Their equations of motion are given by equa-

tions (3.56) and (3.76). Now h is associated with (1, 1)-forms, i.e., h(2,0) = h(0,2) = 0.

Hence (3.56) gives

(∆ + λ(2,0))k
−(2,0) = 0 λ(2,0) 6= 0, (3.92)

and k−(0,2) is the complex conjugate of k−(2,0). So k−(2,0) is a complex massive scalar field

with m2 = λ(2,0) > 0.

For the (1, 1)-forms, we have to diagonalize equations (3.56) and (3.76), which was

discussed in section 2.2.2.

3.5.10 Scalar/1-form modes

In this sector we have the complex fields m, q−, Z and N . (More precisely: m(1,0),

q−(1,0) etc.) These satisfy the equations of motion (3.57), (3.58), (3.74), (3.77) and the

constraints (3.51), (3.68). These constraints are compatible with the equations of motion

and can be used to eliminate, say, q− and Z, leaving two fields m, N . The equations of

motion for m and N are (3.77) and

(∆ + λ1)m − 2cλ1N = 0. (3.93)

Diagonalizing gives the masses as

m2 = λ1 + 2c2 ±
√

(λ1 + 2c2) − λ2
1. (3.94)

Since λ1 > 0, these two fields are massive.

3.5.11 Scalar/scalar modes

This sector contains the real fields n−, S, Z+, Q, T (we saw above that n+ = Z− = 0).

The equations of motion are (3.59), (3.66), (3.75), (3.78), (3.79) and there are two con-

straints (3.65), (3.69). It can be checked that the constraints are consistent with the

equations of motion.

If λ = 0 then the only physical modes are S and T , obeying the equations of mo-

tion (3.66), (3.79) and the constraint (3.65). The constraint can be used to eliminate,

T , leaving

(∆ + 12c2)S = 0 λ = 0, (3.95)

so for λ = 0 we have a single field with m2 = 12c2.

Now assume λ > 0. The constraints can be used to eliminate S and T , leaving three

fields. The other equations can be rearranged to give

(∆ + λ + 4c2)(Q + Z+) = 0 λ 6= 0 (3.96)

hence Q + Z+ is a field with m2 = λ + 4c2. The remaining two linear combinations with

definite mass can be identified by setting V = n− + αZ+ + β(Q + Z+) and choosing α, β

so that the equations of motion imply (∆ + m2)V = 0. This requires β = λ/(3α + 3c) and
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α = (1/2)(−c±
√

4λ + 9c2), corresponding to two linear combinations V±. The masses are

given by

m2
± = λ + 6c2 ±

√

(λ + 6c2)2 − λ(λ − 4c2) λ 6= 0. (3.97)

Scalar modes with λ = 4c2 give a massless field V−. As discussed above, such modes are

in one-to-one correspondence with Killing vector fields of M6.
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4 Conventions

We use a positive signature metric. The bosonic action for eleven-dimensional supergravity

is given by

16πGS =

∫

d11x
√−gR +

∫
(

−1

2
F ∧ ⋆F +

1

6
A ∧ F ∧ F

)

, (4.1)

where F = dA is the 4-form. The equations of motion are

RMN =
1

12

(

FMPQRFN
PQR − 1

12
gMNFPQRSFPQRS

)

, d ⋆ F =
1

2
F ∧ F. (4.2)

The orientation is fixed by specifying the 11d volume form

η11 = η5 ∧ η6, (4.3)

where η5 and η6 are the volume forms of AdS5 and M6 respectively. η6 is related to the

Kähler form by

η6 = 6J ∧ J ∧ J. (4.4)

On M6 we have

d†6 = ⋆6d6⋆6, (4.5)

and the Laplacian is

∆6 = d6d
†
6 + d†6d6. (4.6)

We also have the Dolbeault operators ∂, ∂̄ such that d6 = ∂ + ∂̄. We can define an exterior

derivative dc
6 using Jm

n∇n, or, equivalently,

dc
6 = −i(∂ − ∂̄). (4.7)

On AdS5, for a p-form X, we define

d†5Xp = (−)p+1 ⋆5 d5 ⋆5 Xp (4.8)

and the wave operator is

∆ = d5d
†
5 + d†5d5. (4.9)

A free p-form field of mass m has equation of motion
(

∆ + m2
)

Xp = 0. (4.10)
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